บทที่3 พันธะเคมี

บทที่3 พันธะเคมี

ชนิดของพันธะเคมี 
พันธะภายในโมเลกุล
(intramolecular bond)
พันธะระหว่างโมเลกุล
(intermolecular bond)
พันธะโคเวเลนต์ (covalent bonds)พันธะไฮโดรเจน (hydrogen bonds)
พันธะไอออนิก (ionic bonds)แรงแวนเดอร์วาลส์ (Van der Waals forces)
พันธะโลหะ ( metallic bonds)แรงดึงดูดระหว่างโมเลกุล - ไอออน
(molecule-ion attractions)
 พันธะไอออนิก       พันธะไอออนิก ( Ionic bond ) หมายถึง  แรงยึดเหนี่ยวที่เกิดในสารประกอบที่เกิดขึ้นระหว่าง 2 อะตอมอะตอมที่มีค่าอิเล็กโตรเนกาติวิตีต่างกันมาก อะตอมที่มีค่าอิเลคโตรเนกาติวิตีน้อยจะให้อิเลคตรอนแก่อะตอมที่มีค่าอิเลคโตรเนกาติวิตีมาก และทำให้อิเล็กตรอนที่อยู่รอบๆ อะตอมครบ 8 (octat rule ) กลายเป็นไอออนบวก และไอออนลบตามลำดับ เกิดแรงดึงดูดทางไฟฟ้าระหว่างไอออนบวกและไอออนลบ และเกิดเป็นโมเลกุลขึ้น เช่น การเกิดสารประกอบ NaCl ดังภาพ

     จากตัวอย่าง Na ซึ่งมีวาเลนซ์อิเล็กตรอนเท่ากับ 1 ได้ให้อิเล็กตรอนแก่ Cl ที่มีวาเลนซ์อิเล็กตรอนเท่ากับ 7 จึงทำให้ Na และ Cl มีวาเลนซ์อิเล็กตรอนเท่ากับ 8 เกิดเป็นสารประกอบไอออนิก

สมบัติของสารประกอบไอออนิก        1.  มีขั้ว เพราะสารประกอบไอออนิกไม่ได้เกิดขึ้นเป็นโมเลกุลเดี่ยว แต่จะเป็นของแข็งซึ่งประกอบด้วยไอออนจำนวนมาก ซึ่งยึดเหนี่ยวกันด้วยแรงยึดเหนี่ยวทางไฟฟ้า
        2.  ไม่นำไฟฟ้าเมื่ออยู่ในสภาพของแข็ง แต่จะนำไฟฟ้าได้เมื่อใส่สารประกอบไอออนิกลงในน้ำ ไอออนจะแยกออกจากกัน ทำให้สารละลายนำไฟฟ้าในทำนองเดียวกันสารประกอบที่หลอมเหลวจะนำไฟฟ้าได้ด้วยเนื่องจากเมื่อหลอมเหลวไอออนจะเป็นอิสระจากกัน เกิดการไหลเวียนอิเลคตรอนทำให้อิเลคตรอนเคลื่อนที่จึงเกิดการนำไฟฟ้า
        3.  มีจุดหลอมเหลวและจุดเดือดสูง  ความร้อนในการทำลายแรงดึงดูดระหว่างไอออนให้กลายเป็นของเหลวต้องใช้พลังงานสูง
        4.  สารประกอบไอออนิกทำให้เกิดปฏิกิริยาไอออนิก  คือ ปฏิกิริยาระหว่างไอออนกับไอออน  ทั้งนี้เพราะสารไอออนิก จะเป็นไอออนอิสระในสารละลาย ปฏิกิริยาจึงเกิดทันที
        5.  สมบัติไม่แสดงทิศทางของพันธะไอออนิก สารประกอบไอออนิกเกิดจากไอออนที่มีประจุตรงกันข้ามรอบ ๆ ไอออนแต่ละไอออนจะมีสนามไฟฟ้าซึ่งไม่มีทิศทาง จึงทำให้เกิดสมบัติไม่แสดงทิศทางของพันธะไอออนิก
        6.  เป็นผลึกแข็ง แต่เปราะและแตกง่าย
 การอ่านชื่อสารประกอบไออนิก          กรณีเป็นสารประกอบธาตุคู่   ให้อ่านชื่อธาตุที่เป็นประจุบวก  แล้วตามด้วยธาตุประจุลบโดยลงท้ายเสียงพยางค์ท้าย  เป็น  “ ไอด์” (ide) เช่น
          กรณีเป็นสารประกอบธาตุมากกว่าสองชนิด ให้อ่านชื่อธาตุที่เป็นประจุบวก แล้วตามด้วยกลุ่มธาตุที่เป็นประจุลบได้เลย เช่น
           กรณีเป็นสารประกอบธาตุโลหะทรานซิชัน ให้อ่านชื่อธาตุที่เป็นประจุบวกและจำนวนเลขออกซิเดชันหรือค่าประจุของธาตุเสียก่อน โดยวงเล็บเป็นเลขโรมัน แล้วจึงตามด้วยธาตุประจุลบ เช่น
พันธะโควาเลนต์       พันธะโควาเลนต์ (Covalent bond)  หมายถึง  พันธะในสารประกอบที่เกิดขึ้นระหว่างอะตอม  2  อะตอม  ที่มีค่าอิเล็กโตรเนกาติวิตีใกล้เคียงกันหรือเท่ากัน แต่ละอะตอมต่างมีความสามารถที่จะดึงอิเล็กตรอนไว้กับตัว อิเล็กตรอนคู่ร่วมพันธะจึงไม่ได้อยู่ ณ อะตอมใดอะตอมหนึ่งแล้วเกิดเป็นประจุเหมือนพันธะไอออนิก หากแต่เหมือนการใช้อิเล็กตรอนร่วมกันระหว่างอะตอมคู่ร่วมพันธะนั้นๆและมีจำนวนอิเล็กตรอนอยู่รอบๆ แต่ละอะตอมเป็นไปตามกฎออกเตต ดังภาพ

    เป็นพันธะที่เกิดจากการใช้อิเล็กตรอนข้างนอกร่วมกันระหว่างอะตอมของธาตุหนึ่งกับอีกธาตุหนึ่งแบ่งเป็น 3 ชนิดด้วยกัน
         1. พันธะเดี่ยว (Single covalent bond ) เกิดจากการใช้อิเล็กตรอนร่วมกัน 1 อิเล็กตรอน เช่น F2 Cl2  CH4 เป็นต้น


         2. พันธะคู่ ( Doublecovalent bond ) เกิดจากการใช้อิเล็กตรอนร่วมกันของธาตุทั้งสองเป็นคู่ หรือ 2 อิเล็กตรอน เช่น O2  CO2 C2H4เป็นต้น

         3. พันธะสาม ( Triple covalent bond ) เกิดจากการใช้อิเล็กตรอนร่วมกัน 3 อิเล็กตรอน ของธาตุทั้งสอง เช่น  N2   C2H2 เป็นต้น
 การอ่านชื่อสารประกอบโควาเลนซ์
            สารประกอบของธาตุคู่ ให้อ่านชื่อธาตุที่อยู่ข้างหน้าก่อน แล้วตามด้วยชื่อธาตุที่อยู่หลัง โดยเปลี่ยนเสียงพยางค์ท้ายเป็น “ ไอด์” (ide)
            ให้ระบุจำนวนอะตอมของแต่ละธาตุด้วยเลขจำนวนในภาษากรีก ดังตาราง
            ถ้าสารประกอบนั้นอะตอมของธาตุแรกมีเพียงอะตอมเดียว ไม่ต้องระบุจำนวนอะตอมของธาตุนั้น แต่ถ้าเป็นอะตอมของธาตุหลังให้อ่าน “ มอนอ” เสมอ


 การพิจารณารูปร่างโมเลกุลโควาเลนต์
         โมเลกุลโควาเลนต์ในสามมิตินั้น สามารถพิจารณาได้จากการผลักกันของอิเล็กตรอนที่มีอยู่รอบๆ อะตอมกลางเป็นสำคัญ โดยอาศัยหลักการที่ว่า อิเล็กตรอนเป็นประจุลบเหมือนๆ กัน ย่อมพยายามที่แยกตัวออกจากกนให้มากที่สุดเท่าที่จะกระทำได้ ดังนั้นการพิจารณาหาจำนวนกลุ่มของอิเล็กตรอนที่อยู่รอบๆ นิวเคลียสและอะตอมกลาง จะสามารถบ่งบอกถึงโครงสร้างของโมเลกุลนั้น ๆ ได้ โดยที่กลุ่มต่างๆ มีดังนี้
                อิเล็กตรอนคู่โดดเดี่ยว
                อิเล็กตรอนคู่รวมพันธะได้แก่ พันธะเดี่ยว พันธะคู่ และพันธะสาม
        ทั้งนี้โดยเรียงตามลำดับความสารารถในการผลักอิเลคตรอนกลุ่มอื่นเนื่องจากอิเลคตรอนโดดเดี่ยวและอิเลคตรอนที่สร้างพันธะนั้นต่างกันตรงที่อิเล็กตรอนโดยเดี่ยวนั้นถูกยึดด้วยอะตอมเพียงตัวเดียว ในขณะที่อิเล็กตรอนที่ใช้สร้างพันธะถูกยึดด้วยอะตอม 2 ตัวจึงเป็นผลให้อิเลคตรอนโดดเดี่ยวมีอิสระมากกว่าสามารถครองพื้นที่ในสามมิตได้มากกว่า ส่วนอิเล็กตรอนเดี่ยวและอิเล็กตรอนคู่โดดเดี่ยว รวมไปถึงอิเล็กตรอนคู่ร่วมพันธะแบบต่าง ๆ นั้นมีจำนวนอิเลคตรอนไม่เท่ากันจึงส่งผลในการผลักอิเลคตรอนกลุ่มอื่นๆ ได้มีเท่ากัน โครงสร้างที่เกิดจกการผลักกันของอิเล็กตรอนนั้น สามารถจัดเป็นกลุ่มได้ตามจำนวนของอิเล็กรอนที่มีอยู่ได้ตั้งแต่ 1 กลุ่ม 2 กลุ่ม 3 กลุ่ม ไปเรื่อยๆ เรียกวิธีการจัดตัวแบบนี้ว่า ทฤษฎีการผลักกันของคู่อิเล็กตรอนวงนอก (Valence Shell Electron Pair Repulsion : VSEPR) ดังภาพ

ภาพแสดงรูปร่างโครงสร้างโมเลกุลโควาเลนต์แบบต่างๆ ตามทฤษฎี VSEPR
หมายเหตุ   A   คือ   จำนวนอะตอมกลาง (สีแดง)
                             X   คือ   จำนวน อิเล็กตรอนคู่รวมพันธะ (สีน้ำเงิน)
                           E   คือ   จำนวนอิเล็กตรอนคู่โดดเดี่ยว (สีเขียว)
แรงยึดเหนี่ยวระหว่างโมเลกุล ( Van de waals interaction)
        เนื่องจากโมเลกุลโควาเลนต์ปกติจะไม่ต่อเชื่อมกันแบบเป็นร่างแหอย่างพันธะโลหะหรือไอออนิก แต่จะมีขอบเขตที่แน่นอนจึงต้องพิจารณาแรงยึดเหนี่ยวระหว่างโมเลกุลด้วย ซึ่งจะเป็นส่วนที่ใช้อธิบายสมบัติทางกายภาพของโมเลกุลโควาเลนต์ อันได้แก่ ความหนาแน่น จุดเดือด จุดหลอมเหลว หรือความดันไอได้ โดยแรงยึดเหนี่ยวระหว่างโมเลกุลนั้นเกิดจากแรงดึงดูดเนื่องจากความแตกต่างของประจุเป็นสำคัญ ได้แก่
       1. แรงลอนดอน ( London Force) เป็นแรงที่เกิดจากการดึงดูดทางไฟฟ้าของโมเลกุลที่ไม่มีขั้วซึ่งแรงดึงดูดทางไฟฟ้านั้นเกิดได้จากการเลื่อนที่ของอิเล็กตรอนอย่างเสียสมดุลทำให้เกิดขั้วเล็กน้อย และขั้วไฟฟ้าเกิดขึ้นชั่วคราวนี้เอง จะเหนี่ยวนำกับโมเลกุลข้างเคียงให้มีแรงยึดเหนี่ยวเกิดขึ้น
        ดังนั้นยิ่งโมเลกุลมีขนาดใหญ่ก็จุยิ่งมีโอกาสที่อิเลคตรอนเคลื่อนที่ได้เสียสมดุลมากจึงอาจกล่าวได้ว่าแรงลอนดอนแปรผันตรงกับขนาดของโมเลกุล เช่น F2 Cl2 Br2 I2 และ CO2 เป็นต้น
        2. แรงดึงดูดระหว่างขั้ว (Dipole-Dipole interaction)เป็นแรงยึดเหนี่ยวที่เกิดระหว่างโมเลกุลที่มีขั้วสองโมเลกุลขึ้นไปเป็นแรงดึงดูดทางไฟฟ้าที่แข็งแรงกว่าแรงลอนดอน เพราะเป็นขั้นไฟฟ้าที่เกิดขึ้นอย่างถาวร โมเลกุลจะเอาด้านที่มีประจุตรงข้ามกันหันเข้าหากัน ตามแรงดึงดูดทางประจุ เช่น H2O  HCl  H2S  และ  CO เป็นต้น
        3. พันธะไฮโดรเจน ( hydrogen bond ) เป็นแรงยึดเหนี่ยวที่มีค่าสูงมาก โดยเกิดระหว่างไฮโดรเจนกับธาตุที่มีอิเล็กตรอนคู่โดดเดี่ยวเหลือ เกิดขึ้นได้ต้องมีปัจจัยต่างๆ ได้แก่ ไฮโดรเจนที่ขาดอิเล็กตรอนอันเนื่องจากถูกส่วนที่มีค่าอิเล็กโตรเนกาติวิตีสูงในโมเลกุลดึงไป จนกระทั้งไฮโดรเจนมีสภาพเป็นบวกสูงและจะต้องมีธาตุที่มีอิเลคตรอนคู่โดดเดี่ยวเหลือและมีความหนาแน่นอิเลคตรอนสูงพอให้ไฮโดรเจนที่ขาดอิเลคตรอนนั้น เข้ามาสร้างแรงยึดเหนี่ยวด้วยได้เช่น H2O HF NH3 เป็นต้น 

พันธะโลหะ
        พันธะโลหะ (Metallic Bond ) คือ แรงดึงดูดระหว่างไออนบวกซึ่งเรียงชิดกันกับอิเล็กตรอนที่อยู่โดยรอบหรือเป็นแรงยึดเหนี่ยวที่เกิดจากอะตอมในก้อนโลหะใช้เวเลนส์อิเล็กตรอนทั้งหมดร่วมกัน อิเล็กตรอนอิสระเกิดขึ้นได้ เพราะโลหะมีวาเลนส์อิเล็กตรอนน้อยและมีพลังงานไอออไนเซชันต่ำ จึงทำให้เกิดกลุ่มของอิเล็กตรอนและไอออนบวกได้ง่าย
      พลังงานไอออไนเซชันของโลหะมีค่าน้อยมาก  แสดงว่าอิเล็กตรอนในระดับนอกสุดของโลหะถูกยึดเหนี่ยวไว้ไม่แน่นหนา  อะตอมเหล่านี้จึงเสียอิเล็กตรอนกลายเป็นไอออนบวกได้ง่าย  เมื่ออะตอมของโลหะมารวมกันเป็นกลุ่ม  ทุกอะตอมจะนำเวเลนซ์อิเล็กตรอนมาใช้ร่วมกัน   โดยอะตอมของโลหะจะอยู่ในสภาพของไอออนบวก ส่วนเวเลนซ์อิเล็กตรอนทั้งหมดจะอยู่เป็นอิสระไม่ได้เป็นของอะตอมใดอะตอมหนึ่งโดยเฉพาะ   แต่สามารถเคลื่อนที่ไปได้ทั่วทั้งก้อนโลหะ  และเนื่องจากอิเล็กตรอนเคลื่อนที่เร็วมาก จึงมีสภาพคล้ายกับมีกลุ่มหมอกอิเล็กตรอนปกคลุมก้อนโลหะนี้นอยู่ เรียกว่า ทะเลอิเล็กตรอน โดยมีไอออนบวกฝังอยู่ในกลุ่มหมอกอิเล็กตรอนซึ่งเป็นลบ  จึงเกิดแรงดึงดูดที่แน่นหนาทั่วไปทุกตำแหน่งภายในก้อนโลหะนั้น ดังภาพ


สมบัติของโลหะ
           เป็นตัวนำไฟฟ้าได้ดี เพราะมีอิเล็กตรอนเคลื่อนที่ไปได้ง่ายทั่วทั้งก้อนของโลหะ   แต่โลหะนำไฟฟ้าได้น้อยลงเมื่ออุณหภูมิสูงขึ้น   เนื่องจากไอออนบวกมีการสั่นสะเทือนด้วยความถี่และช่วงกว้างที่สูงขึ้นทำให้อิเล็กตรอนเคลื่อนที่ไม่สะดวก
           โลหะนำความร้อนได้ดี  เพราะมีอิเล็กตรอนที่เคลื่อนที่ได้  โดยอิเล็กตรอนซึ่งอยู่ตรงตำแหน่งที่มีอุณหภูมิสูง  จะมีพลังงานจลน์สูง และอิเล็กตรอนที่มีพลังงานจลน์สูงจะเคลื่อนที่ไปยังส่วนอื่นของโลหะจึงสามารถถ่ายเทความร้อนให้แก่ส่วนอื่น ๆ ของแท่งโลหะที่มีอุณหภูมิต่ำกว่าได้ 
           โลหะตีแผ่เป็นแผ่นหรือดึงออกเป็นเส้นได้  เพราะไอออนบวกแต่ละไอออนอยู่ในสภาพเหมือนกันๆ กัน และได้รับแรงดึงดูดจากประจุลบเท่ากันทั้งแท่งโลหะ ไอออนบวกจึงเลื่อนไถลผ่านกันได้โดยไม่หลุดจากกัน  เพราะมีกลุ่มของอิเล็กตรอนทำหน้าที่คอยยึดไอออนบวกเหล่านี้ไว้
           โลหะมีผิวเป็นมันวาว  เพราะกลุ่มของอิเล็กตรอนที่เคลื่อนที่ได้โดยอิสระจะรับและกระจายแสงออกมา จึงทำให้โลหะสามารถสะท้อนแสงซึ่งเป็นคลื่นแม่เหล็กไฟฟ้าได้
           โลหะมีจุดหลอมเหลวสูง เพราะพันธะในโลหะ  เป็นพันธะที่เกิดจากแรงยึดเหนี่ยวระหว่างวาเลนซ์อิเล็กตรอนอิสระทั้งหมดในด้อนโลหะกับไอออนบวกจึงเป็นพันธะที่แข็งแรงมาก


ไม่มีความคิดเห็น:

แสดงความคิดเห็น

ข่าวประจำสัปดาห์ที่14

นักวิจัยพยายามพัฒนาหุ่นยนต์ให้แก้ไขความผิดพลาดในการทำงานด้วยตัวเอง เนื้อหาข่าว รองศาสตราจารย์แอดโมนี่และทีมงานวิจัยซึ่งเป็นนักศึกษาของ...